University of Iowa Excel Statistics Worksheet

Responses of fans:24
32
28
24
23
19
47
27
29
30
18
14
18
26
21
8
44
13
21
19
18
35
24
12
38
33
33
20
33
27
42
31
30
31
23
26
28
35
18
38
31
26
27
34
1)
(6 pts in total, parts a through e, scroll down to see all parts)
Suppose you are a sports columnist for your local basketball team. The star player, Du
there is so much that the fans expect of him that it seems like it’s never enough, and t
fan what he or she thought was the number of points scored by Dunkin’ Joe in last nig
You decide to perform a hypothesis test to test your suspicion and you collect sample
by Dunkin’ Joe in last night’s game. The 50 responses are shown to the left, in column
a) (1 pt) State the relevant null and alternative hypotheses that are of interest in this
which represents the true population mean of all the fans’ responses (if they w
H0 (null):
H1 (alternative):
b) (1 pt) Based upon the sample data in column A, what is the value of the test statis
c) (1 pt) What is the p-value? (Show work/code Excel formula)
d) (2 pts) Construct the appropriate confidence interval to test the hypothesis, assum
a 2% chance of a Type I error. (Show work/provide justification/code Excel fo
Lower bound:
Upper bound:
e) (1 pt) Still assuming an alpha of .02, which hypothesis do you favor? Highlight yo
Accept the null
Reject the null
29
24
52
30
29
26
tball team. The star player, Dunkin’ Joe, scored 30 points in last night’s game, and while this is a terrifically high number,
ms like it’s never enough, and the star player appears to be under-appreciated. You suspect that if you were to ask every
cored by Dunkin’ Joe in last night’s game, the average of their responses would be less than 30.
spicion and you collect sample data by asking 50 randomly selected fans how many points he or she thinks were scored
re shown to the left, in column A.
heses that are of interest in this situation. [Hint: The hypothesis test concerns µ (which you can write as µ or mu),
all the fans’ responses (if they were all surveyed) regarding the number of points they think Dunkin’ Joe scored in last night’s ga
at is the value of the test statistic? (Show work/code Excel formula)
val to test the hypothesis, assuming that you’re comfortable with an alpha of .02, that is you are comfortable with
ovide justification/code Excel formula/etc.)
sis do you favor? Highlight your answer and provide a brief justification.
Justification:
kin’ Joe scored in last night’s game.]
Sales
Advertising Highly paid
12.17
4.41
NO
9.98
5.61
NO
24.29
9.35
YES
35.81
11.71
NO
21.36
8.30
NO
28.01
9.66
NO
35.44
9.62
NO
18.07
7.84
YES
43.88
12.40
YES
-0.86
4.78
YES
37.95
12.42
NO
7.89
12.26
NO
7.26
5.21
NO
30.85
9.81
YES
26.76
9.02
YES
32.23
11.45
YES
2.78
8.12
NO
20.69
9.58
YES
12.02
7.31
NO
58.18
14.72
NO
60.33
13.34
NO
35.73
9.68
YES
14.59
7.38
YES
4.83
3.45
NO
15.09
2.89
YES
27.18
11.24
NO
9.12
5.20
NO
8.35
9.04
NO
5.42
4.57
NO
16.33
5.58
YES
28.86
8.20
YES
12.63
7.42
NO
10.04
14.02
NO
19.10
7.53
YES
22.83
7.67
NO
26.78
8.43
NO
25.26
9.44
YES
14.52
8.21
YES
27.54
11.00
YES
36.68
10.12
NO
16.44
6.29
YES
13.80
5.24
YES
26.81
8.32
NO
30.30
13.45
NO
42.73
10.96
YES
2) (3pts, total) Each of the 1499 rows of data (found o
the advertising dollars (in millions) spen
A “highly paid” actor is one who was pai
• Run a regression analysis on sales, u
• For the categorical variable of “High
• When Excel asks the output range (i
• Be sure to include residual plots.
a) (1 pts) Write down the regression eq
let A representing advertising d
b)
(1pt) Suppose the regression mode
and recalling that a highly paid
suggest that using highly paid ac
Yes (using highly paid actor
No (using highly paid actor
c)
(1 pt) Based upon the regression ou
Yes
33.31
19.50
10.31
20.65
-0.92
10.82
33.55
33.94
15.92
7.24
25.27
17.94
23.15
11.19
-0.03
9.67
42.57
19.85
41.09
19.26
22.38
13.35
23.50
23.43
6.61
20.70
21.60
14.13
30.53
25.00
2.70
19.46
19.79
27.52
23.61
12.84
30.36
45.40
13.81
30.49
8.57
19.06
35.25
2.12
17.11
39.05
19.32
11.51
8.80
4.05
8.71
9.57
4.59
9.08
12.57
9.80
7.02
9.17
8.67
12.37
7.52
-0.01
3.43
10.74
8.81
12.94
5.57
8.87
6.39
11.77
9.35
7.96
8.30
8.08
11.75
13.44
7.56
6.13
6.46
6.44
15.58
7.87
8.31
9.89
14.39
11.01
8.95
8.31
9.14
12.17
4.43
7.78
11.47
7.72
YES
NO
NO
YES
NO
NO
YES
YES
YES
NO
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
YES
NO
YES
NO
YES
NO
YES
NO
NO
NO
NO
NO
YES
NO
YES
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
1.05
12.44
9.67
36.80
19.24
47.54
32.94
19.43
19.99
6.88
22.66
15.52
33.37
14.09
14.53
17.81
14.66
18.28
13.85
23.77
12.78
55.98
15.92
20.55
41.74
17.03
43.03
26.53
14.25
15.15
36.44
15.74
24.04
0.84
19.82
42.91
31.03
36.18
39.75
6.07
15.74
17.20
5.91
15.10
14.74
32.55
27.88
11.02
9.88
8.25
10.13
6.27
11.71
9.25
8.52
11.19
3.99
8.97
16.61
7.74
8.10
3.59
10.32
11.30
11.54
12.88
14.16
7.87
16.74
8.17
6.17
12.57
9.77
12.08
7.94
10.22
8.91
9.90
6.07
10.59
10.16
7.35
12.02
7.09
8.10
5.85
8.50
8.89
8.24
10.76
6.87
5.94
7.80
14.27
YES
NO
YES
YES
YES
NO
YES
NO
NO
NO
NO
NO
YES
NO
YES
YES
YES
NO
NO
NO
NO
YES
NO
YES
YES
NO
NO
YES
NO
YES
NO
YES
YES
YES
NO
NO
YES
YES
YES
YES
NO
NO
YES
YES
YES
YES
YES
23.10
22.64
12.88
22.32
29.30
10.91
5.89
16.49
19.76
25.80
21.28
12.17
20.45
30.86
13.15
16.16
27.87
27.45
28.60
40.76
7.56
16.30
18.83
36.96
16.08
18.92
43.02
5.62
11.55
6.74
15.06
22.23
27.01
33.08
18.09
9.66
35.18
14.51
14.84
16.64
8.18
15.60
22.95
35.33
13.54
31.65
14.44
8.33
9.54
5.34
6.47
11.72
11.16
6.06
8.67
8.18
8.56
10.43
5.60
10.90
10.91
4.30
9.14
11.44
10.84
11.88
18.01
5.47
10.61
8.14
12.38
12.76
4.95
12.54
5.51
6.49
12.49
6.84
10.15
10.79
14.16
8.05
9.84
11.55
15.99
6.31
10.75
6.03
6.32
8.44
8.52
12.09
12.53
4.63
YES
NO
YES
YES
NO
NO
NO
NO
NO
YES
YES
YES
YES
NO
NO
NO
NO
NO
YES
NO
YES
NO
YES
YES
YES
NO
NO
YES
NO
YES
NO
YES
YES
NO
NO
YES
YES
NO
YES
NO
NO
YES
YES
NO
NO
NO
YES
24.94
15.93
23.04
12.21
25.90
19.59
13.13
28.78
-2.11
50.30
35.27
21.72
11.15
29.33
-0.88
55.39
19.29
34.44
29.72
20.42
23.15
13.02
15.13
7.93
11.44
10.00
18.61
27.71
31.78
25.44
8.84
35.77
26.33
17.81
39.58
26.78
24.32
25.05
29.78
15.96
-18.13
37.33
10.83
5.79
21.08
8.91
16.49
8.59
10.51
6.64
10.64
8.35
12.52
6.02
14.12
3.90
14.42
12.54
11.10
7.92
9.35
7.19
12.09
6.38
12.72
7.07
11.57
10.75
5.43
5.12
9.60
4.63
9.02
10.56
10.47
16.61
8.63
6.61
10.48
8.47
5.71
9.57
12.65
6.30
8.44
13.08
12.34
12.60
12.95
7.34
12.90
6.75
9.88
7.42
NO
NO
NO
NO
YES
YES
NO
NO
NO
YES
YES
NO
NO
YES
NO
YES
YES
YES
YES
NO
YES
YES
NO
NO
NO
NO
YES
NO
NO
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
NO
YES
YES
NO
NO
YES
NO
YES
7.36
10.70
74.85
23.89
29.13
18.85
24.02
21.36
9.95
24.08
62.33
28.31
23.18
22.35
26.64
-0.69
17.49
22.18
26.51
-4.32
12.45
31.74
19.90
10.73
0.86
33.43
4.12
20.43
34.31
19.19
-1.17
24.33
42.30
9.67
33.15
23.76
26.73
54.14
14.11
17.37
15.42
40.23
35.98
15.54
8.52
27.51
20.73
8.53
4.39
14.34
7.60
11.58
7.47
8.48
11.81
8.96
7.48
15.45
7.86
9.54
7.47
7.38
10.32
6.39
8.10
8.32
6.56
4.95
10.20
13.12
9.71
6.23
11.84
6.00
6.61
10.99
9.81
10.63
9.94
10.01
1.88
12.38
10.76
8.40
13.63
8.44
11.68
8.17
14.35
10.48
5.59
1.22
13.92
8.75
NO
YES
YES
NO
YES
YES
NO
NO
NO
YES
YES
YES
YES
YES
YES
YES
YES
NO
YES
NO
YES
YES
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
YES
YES
YES
YES
NO
YES
YES
YES
NO
YES
YES
YES
YES
YES
NO
19.18
46.13
24.69
23.28
20.04
28.79
11.99
8.30
18.58
29.72
36.97
22.75
33.17
29.04
26.62
24.75
55.11
15.90
22.75
10.14
22.65
23.85
21.06
36.77
21.81
23.52
-0.93
16.15
14.18
12.69
-1.49
16.00
7.18
39.79
24.02
22.97
17.31
9.22
21.01
26.21
1.82
38.66
11.24
30.31
35.38
24.79
10.36
5.22
11.30
6.98
5.49
13.43
13.99
7.61
6.72
12.62
10.55
11.77
5.97
10.02
11.04
10.57
9.74
11.55
6.88
5.71
13.10
10.10
7.57
10.42
8.96
11.41
9.11
10.01
11.13
6.79
6.29
10.51
8.70
10.94
12.33
8.73
11.64
8.95
6.72
10.12
11.32
0.76
11.82
8.73
14.01
14.46
12.07
3.48
YES
YES
YES
NO
YES
YES
NO
NO
NO
YES
NO
YES
YES
YES
NO
NO
NO
NO
YES
NO
NO
NO
YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
YES
NO
NO
YES
NO
NO
YES
YES
YES
21.99
18.56
35.21
16.57
17.77
8.97
38.84
26.75
30.21
5.61
23.72
27.61
-0.87
57.07
31.84
22.93
37.23
31.28
40.81
25.39
7.08
16.49
8.54
22.24
18.37
34.33
6.69
0.26
36.29
16.75
34.54
11.94
18.54
40.26
28.26
8.39
4.75
6.98
22.11
3.01
24.99
18.11
16.00
18.74
7.64
14.90
33.59
8.06
8.42
10.97
5.98
8.93
7.98
17.05
9.69
11.64
7.86
6.98
8.91
7.09
16.23
10.54
9.29
12.36
11.07
10.63
9.69
9.51
5.34
6.12
15.21
5.31
7.36
14.09
8.90
12.20
6.00
12.28
6.58
7.78
10.24
11.41
5.98
2.88
13.52
10.96
10.63
5.53
6.34
3.83
6.97
6.67
7.07
14.90
YES
NO
YES
YES
NO
NO
NO
NO
YES
NO
YES
YES
NO
YES
NO
YES
YES
NO
YES
NO
YES
YES
NO
YES
NO
YES
NO
NO
YES
YES
YES
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
YES
YES
NO
YES
NO
1.93
26.53
9.05
21.49
13.18
5.84
2.35
7.06
33.81
31.80
12.55
44.45
54.13
23.37
51.60
9.55
8.45
22.82
16.56
4.25
1.41
7.64
23.45
24.09
14.58
11.10
19.11
30.47
11.00
15.16
19.49
3.10
17.70
10.31
19.71
-2.65
12.95
1.87
57.47
13.84
8.61
38.73
24.91
34.25
42.52
51.52
19.75
9.54
8.18
10.29
10.99
5.87
6.66
1.17
5.59
13.65
10.50
8.05
13.60
13.12
10.46
10.50
3.94
11.37
9.57
6.10
8.78
11.85
4.84
12.56
8.63
9.01
5.86
10.20
9.63
8.93
5.52
7.27
1.90
5.20
7.20
10.50
12.95
7.47
8.19
13.52
6.30
14.22
11.67
8.85
10.67
10.12
11.81
6.88
NO
YES
NO
NO
YES
NO
NO
NO
YES
NO
YES
NO
YES
YES
YES
NO
NO
YES
NO
NO
NO
YES
YES
YES
YES
NO
YES
NO
NO
NO
YES
NO
YES
NO
NO
YES
YES
NO
NO
NO
NO
YES
YES
YES
NO
YES
NO
25.69
15.65
12.47
30.23
33.04
26.16
12.16
28.52
8.03
5.04
26.45
10.20
30.61
19.04
20.97
72.05
27.80
11.41
14.49
7.60
39.62
24.13
0.24
16.66
4.81
19.66
43.57
13.59
23.51
21.69
24.07
7.02
54.50
30.11
18.42
17.18
21.01
23.99
51.36
20.80
32.30
20.73
10.82
26.58
4.87
21.05
13.76
8.80
6.05
2.56
10.08
11.04
11.60
9.18
9.96
2.37
6.08
6.36
6.72
7.54
6.36
12.66
13.48
12.94
5.87
4.51
7.49
11.50
13.55
13.62
10.70
4.86
8.28
11.19
10.44
11.86
7.53
11.62
3.63
13.90
7.63
7.52
4.90
8.96
9.54
12.28
7.15
10.60
4.55
9.34
10.88
8.01
10.08
9.13
YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
YES
NO
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
YES
NO
YES
YES
YES
NO
YES
YES
YES
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
NO
NO
29.79
40.63
19.13
30.43
31.41
9.94
4.50
18.94
40.95
25.59
10.36
11.97
38.87
48.36
21.62
27.92
40.13
3.23
47.17
13.35
18.08
12.78
11.44
11.17
14.16
10.17
20.08
29.87
20.84
14.29
18.28
19.39
16.72
25.38
17.52
24.45
18.59
31.22
9.96
33.05
11.04
19.71
14.76
20.59
19.83
11.53
23.33
11.33
16.03
8.18
9.72
14.68
7.65
5.22
7.55
12.09
11.21
5.71
5.04
11.95
15.54
10.75
7.58
9.87
0.46
12.62
9.75
10.42
8.26
7.02
9.09
5.76
13.50
9.59
10.97
6.55
6.50
9.28
5.31
10.69
12.28
4.80
12.46
14.47
12.70
10.71
11.30
6.35
7.07
5.36
7.48
8.49
7.97
11.85
NO
YES
NO
YES
YES
NO
NO
YES
YES
NO
NO
NO
YES
NO
NO
YES
YES
YES
YES
NO
NO
YES
NO
YES
NO
YES
YES
YES
YES
NO
YES
YES
YES
YES
YES
NO
NO
YES
NO
YES
NO
YES
NO
YES
YES
YES
NO
20.24
21.23
16.01
17.19
27.98
14.82
21.36
28.82
18.62
22.87
24.02
32.05
32.68
12.71
27.79
50.85
13.46
10.54
16.89
9.52
38.65
19.50
17.98
16.73
17.06
9.59
7.79
55.92
6.98
35.79
24.27
24.74
26.70
22.68
20.76
10.28
14.07
13.53
38.35
9.32
1.97
11.90
12.93
17.97
24.51
35.08
34.28
10.80
7.78
15.05
6.62
8.78
5.09
8.98
17.37
8.31
8.50
12.87
11.40
8.63
7.95
8.00
12.30
7.33
6.50
11.37
5.17
13.48
6.50
7.16
7.89
10.69
4.68
4.82
14.78
5.65
10.40
9.42
11.47
10.46
9.26
6.47
4.67
12.35
8.11
10.67
7.90
6.81
4.54
5.80
10.05
9.23
15.54
11.55
NO
YES
NO
NO
NO
YES
YES
YES
YES
YES
NO
NO
NO
YES
YES
YES
NO
NO
YES
NO
NO
YES
NO
YES
NO
NO
YES
YES
NO
NO
NO
NO
YES
YES
YES
NO
NO
YES
YES
NO
NO
NO
NO
YES
YES
YES
NO
12.24
11.48
13.91
26.57
24.52
22.01
35.72
8.61
12.48
14.28
-6.62
19.46
-1.38
28.12
-0.37
9.63
10.58
20.87
8.70
40.98
6.85
11.18
13.33
20.83
14.32
22.68
31.98
18.70
20.16
19.00
18.67
49.46
8.70
28.24
18.58
21.91
17.20
18.81
28.00
47.60
8.49
18.55
43.67
15.66
16.19
24.48
29.67
7.42
11.00
11.42
9.85
10.83
10.21
9.61
6.82
6.00
6.46
13.43
7.72
5.44
5.42
11.48
5.41
5.67
8.70
10.94
10.01
3.69
5.03
8.31
9.73
4.18
11.40
9.33
8.73
8.20
5.47
7.70
11.82
9.25
10.35
9.86
8.38
10.97
9.90
9.55
13.31
6.13
7.70
10.41
6.75
10.31
10.86
9.48
NO
YES
NO
NO
YES
NO
YES
YES
NO
YES
NO
YES
NO
YES
NO
YES
NO
YES
YES
YES
NO
YES
YES
YES
YES
NO
NO
NO
NO
NO
YES
YES
YES
YES
YES
NO
YES
NO
YES
YES
NO
NO
NO
NO
YES
YES
NO
8.46
19.91
37.63
36.14
17.00
13.41
27.86
23.79
20.03
13.09
12.83
20.06
16.36
7.53
-11.47
6.32
-0.63
5.64
9.50
39.42
14.83
19.61
32.41
12.72
7.88
20.55
13.94
30.95
15.41
10.82
36.30
24.58
4.26
2.81
28.27
27.11
43.20
9.60
9.61
11.89
21.96
14.73
46.43
20.30
17.62
15.78
9.07
2.70
5.62
10.02
8.50
9.04
5.42
5.57
6.56
7.27
5.28
8.40
8.05
13.81
5.81
10.40
6.04
12.03
8.64
3.38
11.71
13.49
10.97
12.62
9.13
10.41
9.25
7.58
11.95
9.13
6.90
10.43
11.04
9.96
0.63
8.83
10.17
10.06
12.67
8.21
9.50
11.15
8.21
13.34
5.17
8.65
7.90
9.18
YES
YES
YES
YES
NO
NO
NO
YES
NO
YES
NO
YES
YES
YES
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
YES
YES
YES
NO
YES
NO
YES
YES
NO
YES
YES
NO
YES
YES
35.88
6.60
11.27
33.05
7.50
15.09
14.77
20.10
5.39
46.47
22.46
43.28
28.63
21.53
11.57
16.86
15.75
16.65
23.42
12.23
18.11
21.04
20.33
18.85
17.69
29.37
30.11
22.89
24.00
20.18
11.26
18.65
41.15
27.06
34.15
9.60
16.61
14.08
27.67
3.55
12.04
13.00
24.39
19.21
33.41
25.33
18.87
9.59
8.06
6.37
12.69
5.20
10.33
7.78
11.71
4.09
13.20
11.62
12.54
9.77
6.55
10.87
9.77
9.49
8.31
10.93
10.21
7.95
5.99
5.03
7.03
6.64
10.04
7.65
12.50
11.06
10.63
7.56
8.76
14.18
6.97
14.07
7.33
12.81
4.78
10.64
7.17
7.91
6.57
7.88
11.18
8.90
9.77
6.73
YES
NO
NO
NO
NO
YES
YES
NO
YES
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
YES
YES
YES
YES
NO
NO
YES
YES
YES
NO
YES
YES
NO
NO
NO
NO
NO
NO
YES
YES
YES
18.39
23.65
30.07
26.78
64.99
17.54
18.37
21.34
31.29
37.26
39.25
7.69
35.44
14.76
6.99
15.37
17.87
19.08
43.52
19.77
5.85
10.95
23.09
14.32
16.18
15.09
34.26
20.50
28.56
25.49
28.63
22.00
54.93
32.47
29.77
23.60
5.82
11.97
53.98
44.21
33.00
22.72
11.43
43.47
8.60
20.03
-0.65
10.08
9.74
8.56
10.89
19.32
4.91
13.86
10.78
10.51
9.44
9.89
2.62
10.11
8.61
6.16
13.50
7.22
7.86
12.80
9.07
4.97
6.87
8.99
7.82
12.94
9.44
12.91
7.98
9.73
12.80
13.04
11.74
16.84
7.88
11.47
8.61
8.44
6.15
15.52
9.19
11.13
10.83
6.81
10.32
2.46
10.40
6.23
YES
NO
NO
YES
NO
YES
NO
YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
YES
YES
NO
NO
NO
YES
YES
NO
YES
YES
YES
NO
NO
YES
NO
NO
YES
NO
YES
NO
YES
YES
YES
YES
YES
NO
YES
YES
NO
NO
30.52
13.29
22.58
9.72
16.17
32.53
21.87
17.11
5.28
17.85
33.49
47.23
21.65
11.73
15.59
12.97
12.91
15.17
25.16
10.11
8.74
8.38
33.82
16.34
20.72
27.77
10.84
17.51
46.74
21.44
7.87
24.24
22.33
31.74
15.24
28.35
29.69
15.10
37.20
6.95
18.83
4.20
23.70
40.76
25.49
20.87
18.03
10.90
4.10
7.32
5.84
8.43
9.38
11.87
8.94
6.47
11.34
12.97
13.20
5.67
13.12
8.17
5.24
7.19
8.29
11.27
5.10
9.61
8.45
13.75
9.97
10.38
8.80
9.44
10.01
14.70
8.39
11.78
11.62
9.23
10.51
10.50
11.46
9.71
9.22
9.02
8.01
9.42
9.72
8.04
10.75
12.98
7.44
9.79
NO
YES
YES
YES
NO
YES
NO
NO
YES
NO
NO
YES
YES
NO
YES
NO
NO
YES
NO
NO
NO
NO
YES
YES
NO
YES
NO
NO
YES
YES
NO
NO
YES
YES
NO
YES
NO
NO
YES
YES
YES
NO
YES
NO
NO
NO
YES
38.70
23.47
25.56
19.03
28.75
5.42
25.80
5.95
26.79
21.34
11.92
14.66
45.83
10.50
22.12
29.14
19.70
26.48
26.72
33.32
24.29
22.66
4.31
6.70
11.38
67.14
9.01
3.46
18.34
19.59
35.90
37.60
25.20
17.86
21.02
11.56
16.03
28.98
7.93
23.52
19.37
3.76
13.28
16.09
41.94
30.76
10.53
10.16
12.52
9.72
9.44
11.27
4.87
9.59
11.80
8.16
6.00
8.08
9.26
10.67
10.77
10.26
10.98
10.54
10.25
11.33
8.88
10.95
8.71
7.17
7.40
10.43
16.00
14.03
12.37
10.84
5.73
11.00
14.64
9.35
7.19
8.65
8.98
5.21
7.57
8.79
8.00
7.49
5.83
5.03
10.08
11.58
8.08
3.09
NO
YES
YES
NO
NO
NO
NO
YES
YES
YES
NO
YES
YES
NO
YES
NO
YES
YES
NO
NO
YES
YES
NO
YES
NO
NO
YES
NO
NO
YES
YES
NO
YES
NO
NO
NO
YES
YES
NO
YES
NO
NO
NO
YES
YES
YES
NO
14.85
30.57
22.88
11.41
15.63
21.74
12.77
7.59
10.31
21.63
13.33
26.33
28.15
14.90
22.84
15.41
24.95
17.36
19.37
5.73
18.07
15.69
9.87
26.42
12.18
35.03
6.10
23.50
28.23
37.83
20.77
16.36
13.91
24.44
26.86
22.10
1.28
33.82
21.96
18.00
46.77
17.98
0.06
19.31
54.34
20.92
8.46
6.21
8.59
9.92
5.99
7.03
6.90
11.70
7.21
10.20
10.65
7.61
12.58
10.29
7.30
12.32
7.22
6.81
9.40
2.46
8.52
7.47
8.14
6.31
5.98
6.93
11.69
9.95
9.65
10.55
9.87
8.19
10.84
9.65
9.12
8.68
5.62
4.05
6.40
8.45
8.44
12.73
11.61
8.59
10.57
12.54
7.70
7.36
NO
YES
NO
NO
YES
YES
NO
YES
NO
NO
NO
YES
NO
NO
YES
NO
YES
NO
YES
NO
YES
YES
NO
YES
YES
YES
NO
NO
YES
YES
YES
NO
NO
NO
YES
YES
YES
YES
NO
NO
YES
NO
NO
YES
NO
YES
YES
9.38
17.12
27.54
26.67
5.82
29.07
41.69
8.36
12.18
23.99
29.55
16.30
16.85
13.76
12.25
24.94
-0.28
29.63
10.73
30.15
18.14
4.32
2.33
19.25
10.13
27.84
12.58
43.20
26.43
27.66
9.11
17.84
40.16
32.61
9.13
3.98
8.66
27.34
12.67
10.78
5.43
12.66
14.66
23.13
5.71
9.92
7.76
7.81
6.07
8.03
8.14
11.06
11.47
13.71
10.73
4.52
7.12
15.55
8.69
8.64
9.66
6.24
10.80
11.46
8.75
8.06
11.83
6.35
2.64
2.52
7.72
9.54
8.66
3.47
11.12
10.72
7.86
9.05
12.74
9.44
13.80
3.82
18.17
12.63
12.63
6.60
5.62
3.05
5.08
8.54
8.71
11.34
3.81
14.18
NO
YES
NO
NO
NO
YES
YES
NO
YES
NO
NO
YES
YES
NO
NO
YES
NO
YES
NO
NO
NO
YES
NO
YES
NO
NO
YES
YES
NO
YES
YES
NO
NO
YES
YES
YES
NO
YES
YES
YES
NO
NO
YES
NO
NO
YES
NO
19.72
15.64
21.44
11.01
22.01
16.08
13.88
17.23
33.59
10.17
14.87
44.01
21.78
16.66
18.22
23.44
31.57
43.68
33.70
18.96
14.97
2.62
37.45
19.30
15.52
36.65
4.14
20.67
34.19
25.34
25.59
8.24
20.62
9.36
19.21
18.04
15.75
1.28
22.49
9.85
33.09
12.81
28.82
42.43
11.74
13.94
12.65
8.10
5.67
10.78
4.73
7.24
3.42
7.41
7.64
10.56
5.03
5.90
11.92
10.18
11.31
7.22
5.73
14.46
12.25
14.00
8.77
7.58
3.88
8.01
9.43
7.80
10.33
3.01
10.24
11.02
10.69
6.34
7.70
6.78
6.88
8.98
9.15
6.21
0.76
7.15
7.07
7.96
5.60
7.11
12.45
8.07
7.19
6.40
NO
YES
YES
YES
NO
YES
YES
YES
NO
NO
YES
YES
YES
NO
YES
YES
NO
YES
NO
YES
NO
NO
YES
NO
YES
YES
NO
YES
YES
YES
NO
NO
YES
NO
NO
YES
YES
NO
NO
NO
NO
YES
NO
NO
NO
YES
NO
19.28
32.04
18.98
17.25
23.55
12.18
11.07
26.30
5.97
22.66
12.94
16.19
29.73
24.19
12.55
35.15
22.12
26.87
17.75
17.28
12.58
6.56
9.56
24.63
14.67
30.34
33.42
35.38
10.01
20.18
15.96
23.84
29.19
34.33
9.02
6.68
8.36
5.67
35.01
27.65
22.03
34.18
22.05
0.33
3.23
8.01
19.04
9.73
12.02
10.18
9.95
7.78
5.69
8.10
11.73
11.29
9.74
8.95
9.16
11.22
9.65
2.80
16.58
7.59
8.44
5.43
14.05
7.70
6.89
4.42
9.26
12.25
8.92
10.19
11.77
9.57
10.91
5.99
4.95
10.06
8.50
5.71
4.37
6.64
8.02
8.98
10.05
9.79
12.23
10.93
0.08
7.47
3.17
11.74
YES
YES
NO
YES
NO
NO
NO
YES
NO
YES
YES
NO
YES
YES
YES
NO
YES
YES
YES
NO
NO
NO
NO
YES
YES
YES
YES
NO
YES
NO
NO
YES
YES
YES
NO
YES
YES
NO
YES
NO
YES
YES
NO
NO
YES
YES
YES
19.15
8.98
6.90
20.10
11.83
14.78
27.74
23.19
9.00
12.42
12.48
20.26
27.85
16.63
17.71
7.35
19.11
25.99
5.64
21.68
12.90
14.37
20.11
6.20
23.13
3.82
9.07
17.59
19.85
16.24
14.29
7.37
24.44
13.44
16.00
31.09
30.47
31.71
12.30
25.44
18.12
43.93
24.43
10.82
30.69
3.33
3.09
8.35
8.06
6.81
10.27
9.07
13.22
9.42
9.91
5.36
1.76
7.76
6.28
13.58
6.43
13.46
9.89
9.13
14.17
3.23
9.17
8.77
4.94
8.16
9.22
11.27
9.68
7.26
11.59
11.30
7.11
10.98
1.97
8.62
6.34
10.32
8.62
10.02
9.64
7.51
8.91
3.91
8.38
7.21
8.39
10.61
10.07
6.66
NO
NO
YES
NO
NO
NO
YES
NO
NO
YES
YES
YES
YES
NO
NO
YES
NO
YES
NO
NO
NO
YES
YES
YES
NO
YES
NO
NO
YES
YES
NO
YES
YES
YES
YES
YES
YES
NO
NO
YES
YES
YES
NO
NO
NO
NO
NO
24.18
37.19
49.12
27.01
30.38
0.89
21.63
29.30
7.57
23.06
37.76
2.63
22.14
31.94
12.92
21.20
16.36
37.23
10.55
25.77
13.92
12.13
18.66
23.48
19.58
17.61
6.71
13.56
41.47
29.55
12.40
9.14
34.46
17.45
10.76
13.75
1.60
17.99
26.13
25.99
37.69
27.54
9.82
27.73
9.51
20.30
49.72
10.87
8.67
14.97
8.66
12.18
0.90
12.34
9.60
6.17
7.67
13.57
6.37
11.88
8.75
5.58
7.22
8.96
12.02
9.88
8.14
7.86
4.40
7.31
9.10
10.02
11.45
3.07
5.68
12.01
8.37
6.18
10.97
9.58
7.20
9.99
10.64
7.95
5.99
9.96
10.37
11.51
7.06
4.21
15.92
5.72
11.21
16.33
YES
NO
YES
NO
NO
NO
NO
YES
NO
YES
NO
NO
NO
YES
NO
NO
NO
YES
YES
NO
NO
NO
YES
YES
NO
NO
YES
YES
NO
YES
YES
YES
YES
NO
NO
NO
YES
NO
YES
NO
YES
YES
YES
YES
NO
NO
YES
9.87
20.35
6.46
37.58
30.18
24.07
37.40
15.81
48.68
29.35
41.70
17.11
18.46
41.38
1.62
26.99
19.96
16.07
32.80
10.35
18.23
17.61
18.85
22.29
17.32
18.77
32.16
43.07
5.31
0.90
16.68
-6.95
15.32
10.54
7.68
27.20
21.19
21.42
37.99
27.52
9.99
32.23
21.77
22.35
11.61
45.47
9.67
13.80
8.33
13.27
12.66
10.12
9.06
9.34
4.72
13.42
11.55
11.02
9.30
9.70
13.79
9.34
7.20
10.70
8.35
15.77
6.83
8.44
10.14
6.97
8.92
7.71
11.79
10.70
10.55
7.48
2.50
4.55
6.72
6.99
6.67
8.44
7.36
8.31
7.36
11.32
10.82
7.60
6.64
8.07
5.87
8.23
10.08
8.02
YES
NO
NO
YES
YES
YES
YES
NO
YES
NO
YES
NO
YES
NO
YES
NO
YES
NO
NO
YES
YES
NO
YES
YES
NO
NO
YES
YES
NO
NO
NO
NO
NO
YES
YES
YES
NO
NO
YES
NO
YES
YES
NO
YES
NO
YES
YES
21.63
26.08
10.48
16.54
17.13
21.28
30.21
23.57
16.08
15.02
20.19
17.13
39.95
25.02
36.30
22.17
17.03
8.12
16.94
17.81
22.60
30.41
38.97
13.24
23.65
37.43
25.87
24.88
14.94
12.13
-3.06
12.51
15.37
5.47
10.17
33.02
11.42
31.95
33.29
23.97
24.22
15.86
7.45
3.10
26.96
23.49
26.66
7.13
10.98
6.93
5.10
8.59
6.29
11.61
8.85
7.33
6.27
5.22
3.25
9.84
8.93
9.11
9.16
13.12
5.68
8.82
10.25
13.96
11.28
11.33
13.04
9.03
11.26
6.48
7.93
9.12
11.69
4.93
6.73
12.97
2.32
4.70
6.75
9.27
12.68
11.73
6.77
9.19
3.58
7.97
5.85
10.96
8.49
9.99
NO
NO
YES
YES
NO
NO
YES
NO
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
YES
YES
YES
NO
YES
NO
NO
YES
YES
YES
YES
YES
NO
NO
YES
NO
NO
YES
NO
NO
NO
YES
YES
YES
YES
NO
YES
YES
YES
28.64
12.15
11.71
16.72
-0.62
45.03
7.70
23.56
33.47
33.93
16.44
29.95
18.99
21.90
11.90
45.47
4.51
47.88
58.95
21.65
9.40
19.41
12.94
10.75
28.55
3.79
14.97
32.33
17.78
40.77
16.83
44.90
6.90
21.47
10.63
13.49
27.28
11.86
34.15
10.58
6.20
40.47
17.26
18.14
20.11
13.37
4.31
7.76
8.41
6.15
11.48
9.79
11.98
14.10
13.76
11.27
16.25
8.52
10.20
9.65
6.73
7.37
12.17
6.64
12.22
15.92
8.70
3.31
9.59
6.65
4.62
7.80
9.72
14.15
9.73
7.74
10.14
8.60
10.67
2.97
10.23
4.87
10.55
10.35
13.41
10.65
7.59
8.45
12.50
6.48
8.02
7.80
6.88
6.45
YES
YES
NO
YES
NO
YES
NO
NO
NO
NO
NO
YES
YES
YES
YES
YES
NO
YES
NO
NO
YES
NO
NO
YES
YES
NO
NO
NO
YES
YES
YES
YES
NO
NO
NO
YES
NO
YES
YES
NO
YES
YES
NO
NO
YES
NO
NO
1.35
10.43
10.70
29.33
20.43
20.86
7.38
22.91
6.60
15.12
28.08
15.11
7.60
41.88
-1.56
10.16
24.78
14.26
53.94
30.27
24.16
16.98
14.61
34.22
14.19
20.55
12.83
36.82
18.50
20.16
34.30
28.32
10.92
16.85
10.95
9.64
21.08
11.87
8.79
10.30
23.15
49.30
39.39
5.84
13.25
23.15
12.46
0.71
7.10
5.51
12.53
11.39
9.00
8.26
6.86
2.67
5.60
14.08
8.69
5.43
7.78
13.71
6.58
13.78
8.87
11.37
13.99
11.36
7.72
4.66
11.75
8.24
5.82
5.36
9.29
7.74
7.20
16.00
11.02
8.45
6.01
1.74
8.03
8.11
6.56
4.52
10.67
10.97
11.57
9.93
8.71
11.59
8.72
5.18
NO
YES
NO
NO
YES
YES
NO
YES
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
YES
NO
YES
NO
YES
NO
YES
NO
YES
YES
YES
NO
NO
YES
NO
YES
NO
YES
YES
NO
NO
YES
NO
NO
YES
NO
NO
YES
19.38
11.04
11.01
17.77
25.96
13.81
19.74
17.90
10.05
13.40
26.32
35.51
22.54
13.52
20.13
21.54
25.66
13.22
13.08
20.56
46.25
46.79
5.90
7.82
18.90
20.13
24.07
26.92
28.76
6.67
13.42
19.00
21.91
11.30
11.70
10.85
12.15
15.21
25.61
22.98
40.40
-19.74
21.76
14.41
20.81
21.34
16.81
14.35
7.14
3.41
6.63
7.52
9.76
6.53
9.86
9.78
5.76
10.82
14.01
7.56
8.90
9.83
9.76
5.86
5.68
11.27
6.20
9.73
13.07
14.64
10.68
8.36
11.42
9.37
12.16
9.30
15.75
8.73
7.62
8.29
7.30
4.15
11.11
5.97
6.59
8.94
9.03
12.37
16.28
7.88
9.12
8.19
8.16
11.39
YES
NO
NO
NO
YES
YES
NO
YES
NO
NO
NO
YES
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
NO
YES
NO
YES
YES
NO
YES
YES
NO
NO
YES
NO
YES
YES
NO
YES
YES
YES
YES
YES
13.42
18.04
19.63
1.21
35.62
16.40
29.30
10.84
11.34
34.05
16.95
24.82
15.32
11.31
20.43
13.37
34.35
38.75
7.08
50.96
17.07
19.19
23.16
29.71
7.10
26.79
24.03
9.49
56.05
40.76
6.09
34.00
9.92
20.32
7.60
9.65
21.21
21.76
14.84
25.67
3.87
31.68
28.15
21.29
32.15
24.85
24.64
5.01
12.95
7.55
8.41
12.02
6.33
6.93
8.97
13.92
11.13
7.95
8.40
10.40
7.89
8.30
5.16
7.82
11.77
4.82
11.63
7.64
7.06
7.21
12.13
10.10
8.53
8.56
3.33
16.91
13.47
3.06
14.75
8.80
8.64
3.38
8.83
6.99
11.92
5.53
9.47
5.29
8.20
9.36
8.23
10.35
9.55
6.21
YES
YES
YES
NO
NO
NO
YES
NO
YES
YES
YES
YES
YES
YES
YES
NO
NO
NO
YES
YES
NO
NO
YES
NO
NO
YES
YES
NO
YES
NO
NO
YES
NO
NO
YES
YES
NO
YES
NO
NO
NO
NO
YES
NO
YES
YES
YES
22.71
35.83
13.55
18.81
29.45
1.15
3.59
16.04
-2.58
10.57
19.72
5.92
22.45
5.09
21.90
15.60
23.65
45.30
13.93
24.98
29.75
50.57
14.35
16.22
49.59
18.20
20.93
14.33
32.26
16.35
11.48
26.44
10.65
7.27
11.48
21.82
24.11
13.38
27.42
29.52
20.58
21.32
11.82
13.85
26.51
10.39
21.75
4.84
7.34
10.15
5.31
11.88
2.78
1.38
7.13
13.25
10.39
4.38
7.42
11.61
11.15
7.00
8.33
8.15
12.15
9.16
12.43
9.70
13.38
8.95
9.57
11.96
7.60
6.28
9.04
12.15
7.63
7.03
9.09
6.66
1.39
8.82
9.32
7.63
3.80
9.24
11.88
4.98
13.19
3.74
10.64
8.61
8.53
9.17
YES
YES
NO
NO
NO
NO
NO
NO
NO
YES
YES
NO
YES
NO
YES
YES
YES
NO
NO
NO
YES
YES
NO
YES
NO
NO
YES
YES
NO
NO
YES
NO
YES
YES
NO
NO
YES
NO
YES
NO
YES
YES
NO
NO
NO
NO
NO
13.60
7.03
15.10
16.21
11.39
36.04
9.89
10.12
26.81
19.73
7.07
13.16
13.69
26.25
15.58
23.12
30.04
9.20
12.15
3.11
13.21
23.56
27.28
16.01
12.24
20.69
25.82
21.69
3.27
13.42
25.17
20.98
7.05
7.33
5.99
13.37
45.92
21.78
2.60
27.47
28.17
5.94
25.21
17.17
9.86
4.01
8.40
14.54
8.13
9.84
4.87
7.78
9.97
10.68
8.42
12.81
9.67
6.99
7.96
8.03
11.94
6.07
5.18
3.87
2.79
10.09
11.05
7.09
5.04
8.64
9.90
6.51
3.62
5.57
10.68
8.40
4.90
11.59
10.07
7.67
11.71
9.51
7.15
6.08
10.32
12.15
6.42
15.27
NO
YES
NO
NO
NO
YES
YES
YES
NO
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
YES
NO
YES
YES
NO
NO
NO
NO
NO
NO
YES
NO
NO
YES
NO
YES
YES
NO
YES
NO
YES
YES
YES
YES
1499 rows of data (found on the left, spanning columns A, B and C) depicts the sales of a particular movie (in millions of dollar
ng dollars (in millions) spent on that movie, and whether or not there was a highly paid actor that appeared in the movie.
d” actor is one who was paid more than $5 million.
gression analysis on sales, using the independent variables of “Advertising” and “Highly paid.”
categorical variable of “Highly paid,” treat “NO” as the base case.
xcel asks the output range (i.e. where you want to output the regression analysis), choose cell G30.
to include residual plots.
rite down the regression equation that results from running Excel’s regression analysis. Let S represent sales,
A representing advertising dollars, and let H represent the variable corresponding to a highly paid actor, with base case of “NO
ppose the regression model accurately predicts a movie’s revenue. Recalling that profit equals revenue minus cost,
recalling that a highly paid actor is one who by definition costs more than $5 million to obtain, does the regression analysis
gest that using highly paid actors adds to the movie’s bottom line profit total? Highlight your answer.
Yes (using highly paid actors increases movie’s profit)
No (using highly paid actors does NOT increase movie’s profit)
ased upon the regression output, do the residuals appear to be independent of the “Advertising” variable? Highlight your ans
No
ular movie (in millions of dollars),
id actor, with base case of “NO.”
g” variable? Highlight your answer
3) (2 points) Suppose that you run a regression analysis of summer temperatures in Iowa, based on the variab
(measured in the number of hours away from noon, so 10AM and 2PM would both be recorded as
regression equation that results from this is as follows:
What would be the fitted regression equation if you had instead used North as the base case for th
(Your answer should include some amount of work shown. The answer will be a single equation, bu
es in Iowa, based on the variables of Region (either North, South, East, West) and Time of day the temperature was recorded
PM would both be recorded as 2). Suppose you let West be the base case for the variable, Region, and suppose the fitted
Temperature = 80 + 2*South – 4*North + 1*East – 3*Time.
d North as the base case for the variable, Region?
wer will be a single equation, but you need to include enough work/explanations to indicate how you arrived at that answer.)
the temperature was recorded
on, and suppose the fitted
w you arrived at that answer.)
4) (2 points, total) Suppose you wish to maximize the value of 2y+8x, subject to the following constraints:
y≤4
y ≥ x+1
x+y ≤ 6
Also assume non-negativity
Set up and solve this linear program using Excel’s solver so that you maximize the value of 2y+
Place your answer of this maximum value in the highlighted green cell, below.
t you maximize the value of 2y+8x subject to the above constraints.
5) (4 points in total, parts a through c, scroll down to see all parts)
Suppose that you own a pizza shop and make 3 different types of pizzas, using 4 varieties of
Also, each pizza requires certain amounts of the various cheeses but you only have a certain
All this information appears in the table, below. (The 16 numbers in cells B9:E12 represent o
Lastly, you are under contract with the company that provides your gorgonzola cheese, and t
across all made pizzas must be at least as much as the sum total of ounces of all other (non-g
Cheddar
Amazing Saucer
Queso-rific
Cheddar Time
Mozzarella Gorgonzola
Swiss
1
2
13
0
13
0
13
5
12
500 avail. 300 avail. 800 available 200 avail.
3 $10 revenue
5 $8 revenue
1 $14 revenue
In what follows, you’ll be setting up and solving a linear program (LP) which reflects the abov
in order to maximize your revenue. Assume that any unused cheese is wasted, and assume t
make fractions of pizzas, i.e. it’s fine if the solution shows making 3.437 pizzas (for example)
• Let the variable A represent the number of Amazing Sauacer pizzas that you make
• Let the variable Q represent the number of Queso-rific pizzas that you make
• Let the variable C represent the number of Cheddar Time pizzas that you make
a) (1pt) Write down the objective function, as a mathematical expression in term of the va
Here you are not coding the Excel cells, but instead writing a mathematical expression, i.e
b) (1 pt) Write down all applicable constraints for this problem as mathematical expressio
Here you can use = for “greater than or equal.” Your answ
but is instead a list of mathematical expressions, i.e. it’s what you’d write on paper if you w
c) (2 pts) What is the maximum revenue that is achievable while still satisfying all of the pr
(To receive full credit, you must properly code your workbook and solve this with Excel’s So
hich reflects the above scenario and your attempt to bake the appropriate quantities of each pizza
wasted, and assume that all baked pizzas will end up being purchased. Also, assume that you can
matical expression, i.e. it’s what you’d write on paper if you were writing the objective function.
6) (6 points, total) A company will need to produce P units of a product next quarter, where P is uncertain bu
Note that since P is continuous, we are allowing for fractions/decimals of product to be prod

Option 1: Its first option is to produce the units themselves for a per-unit cost of $125 and a fixe
• Option 2: Its second option is that it can outsource the production to another company for a fix
chance that F will be $70,000 and a 90% chance that F will be $35,000), as well as a per-unit cost, C
a) (2 pts) Let X represent the cost incurred by the company if it takes Option 1 and Let Y represent the cos
Note that there should be no Excel formula’s here, just write down what X and Y equal in terms of
X=
Y=
b) (3 pts) Run a Monte Carlo Simulation with 1000 trials simulating the values of X and Y.
Place your MCS on this same sheet, below line 25
c) (1 pts) Based upon the results of your simulation in (b), what percentage of the time does your simulat
RUN YOUR MCS HERE
Trial:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
uarter, where P is uncertain but follows a (continuous) uniform distribution with minimum value 800 and maximum value 170
decimals of product to be produced. The company has two options for how it can produce these P units:
on to another company for a fixed cost of F (which is an international surcharge that varies from time to time, and there is a 1
00), as well as a per-unit cost, C, which is uncertain but normally distributed with mean $175 and standard deviation $12.
e of the time does your simulation tell you that it is cheaper for the company if they produce the product themselves?
ue 800 and maximum value 1700.
m time to time, and there is a 10%
7) (1 pt) Consider the following situation: You run a catering business and every Wednesday evening you deli
You’ve noticed that you frequently have leftovers, and one of your employees who delivers the leftove
You, however, have been recording the quantity of leftovers (measured in pounds) that exist after eac
that you’ve recorded lead you believe that your employee is incorrect. Since the quantity of leftovers
your employee is incorrect. To do this, you recall the techniques learned from your fondly remembere
Suppose you wish to test your hypothesis using your sample data from these 36 most recent Wednesd
You want to test the hypothesis with an alpha of .05, and you discover that the test statistic is positive
What was the sample average from your data? (Must show work/properly coded Excel cell/etc.)
Hint: Based on the information in the problem, what is the test statistic? Now look at the equation for
y Wednesday evening you deliver the same dinner (identical food and quantity) to the same executives at a particular compan
loyees who delivers the leftovers to a local shelter told you she thought there were about 10 pounds of leftovers per dinner, o
in pounds) that exist after each of these Wednesday night dinners. You’ve been doing this now for 36 weeks and the sample
Since the quantity of leftovers exhibits some amount of randomness, you decide to test your hypothesis with the goal of prov
these 36 most recent Wednesday night dinners, and suppose you find that the sample standard deviation of this data is 3 pou
ounds of leftovers per dinner, on average.

Don't use plagiarized sources. Get Your Custom Essay on
University of Iowa Excel Statistics Worksheet
Just from $13/Page
Order Essay
Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.
Live Chat+1(978) 822-0999EmailWhatsApp

Order your essay today and save 20% with the discount code ORIGINAL

seoartvin escortizmir escortelazığ escortbacklink satışbacklink saleseskişehir oto kurtarıcıeskişehir oto kurtarıcıoto çekicibacklink satışbacklink satışıbacklink satışbacklink